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Abstract

Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy

that is different from the currently optimized policy. A common approach is to use importance sam-

pling techniques for compensating for the bias of value function estimators caused by the difference

between the data-sampling policy and the target policy. However, existing off-policy methods often

do not take the variance of the value function estimators explicitly into account and therefore their

performance tends to be unstable. To cope with this problem, we propose using an adaptive impor-

tance sampling technique which allows us to actively control the trade-off between bias and variance.

We further provide a method for optimally determining the trade-off parameter based on a variant

of cross-validation. We demonstrate the usefulness of the proposed approach through simulations.

1 Introduction

Policy iteration is a reinforcement learning setup where the optimal policy is obtained by iteratively
performing policy evaluation and improvement steps (Sutton & Barto, 1998; Bertsekas & Tsitsiklis,
1996). When policies are updated, many popular policy iteration methods require the user to gather new
data samples following the updated policy, and the new samples are used for value function approximation.
However, this approach is inefficient particularly when the sampling cost is high and it would be more cost-
efficient if we could reuse the data collected in the past. A situation where the sampling policy (a policy
used for gathering data samples) and the current policy are different is called off-policy reinforcement
learning (Sutton & Barto, 1998).

In the off-policy setup, simply employing a standard policy iteration method (such as least-squares
policy iteration (Lagoudakis & Parr, 2003)) does not lead to the optimal policy as the sampling policy
can introduce bias into value function approximation. This distribution mismatch problem can be eased
by the use of importance sampling techniques (?), which cancel the bias asymptotically. However, the
approximation error is not necessarily small when the bias is reduced by importance sampling; the
variance of estimators also needs to be taken into account since the approximation error is the sum of
squared bias and variance. Due to large variance, existing importance sampling techniques tend to be
unstable (Sutton & Barto, 1998; Precup et al., 2000).

To overcome the instability problem, we propose using an adaptive importance sampling technique
used in statistics (?). The proposed adaptive method, which smoothly bridges the ordinary estimator and
importance-weighted estimator, allows us to control the trade-off between bias and variance. Thus, given
that the trade-off parameter is determined carefully, the optimal performance can be achieved in terms
of both bias and variance. However, the optimal value of the trade-off parameter is heavily dependent
on data samples and policies, and therefore using a pre-determined parameter value may not be always
effective in practice.

For optimally choosing the value of the trade-off parameter, we propose using an automatic model



selection method based on a variant of cross-validation (?). The method called importance-weighted
cross-validation enables us to estimate the approximation error of value functions in an almost unbiased
manner even under off-policy situations. Thus we can adaptively choose the trade-off parameter based
on data samples at hand. We demonstrate the usefulness of the proposed approach through simulations.

2 Background and Notation

In this section, we review how Markov decision problems can be solved using policy iteration based on
value functions.

2.1 Markov Decision Problems

Let us consider a Markov decision problem (MDP) specified by

(S,A, PT, R, γ),

where

• S is a set of states,

• A is a set of actions,

• PT(s′|s, a) (∈ [0, 1]) is the transition probability-density from state s to next state s′ when action
a is taken,

• R(s, a, s′) (∈ R) is a reward for transition from s to s′ by taking action a,

• γ ∈ (0, 1] is the discount factor for future rewards.

Let π(a|s) ∈ [0, 1] be a stochastic policy which is the conditional probability density of taking action
a given state s. The state-action value function Qπ(s, a) ∈ R for policy π is the expected discounted sum
of rewards the agent will receive when taking action a in state s and following policy π thereafter, i.e.,

Qπ(s, a) ≡ E
π,PT

[ ∞∑
n=1

γn−1R(sn, an, sn+1)
∣∣∣s1 = s, a1 = a

]
,

where Eπ,PT denotes the expectation over {sn, an}∞n=1 following π(an|sn) and PT(sn+1|sn, an).
The goal of reinforcement learning is to obtain the policy which maximizes the sum of future rewards;

the optimal policy can be expressed1 as

π∗(a|s) ≡ δ(a − arg max
a′

Q∗(s, a′)),

where δ(·) is the Dirac delta function and Q∗(s, a) is the optimal state-action value function defined by

Q∗(s, a) ≡ max
π

Qπ(s, a).

Qπ(s, a) can be expressed as the following recurrent form called the Bellman equation (Sutton &
Barto, 1998):

Qπ(s, a) = R(s, a) + γ E
PT(s′|s,a)

E
π(a′|s′)

[Qπ(s′, a′)] ,∀s ∈ S,∀a ∈ A, (1)

1We assume that given state s there is only one action maximizing the optimal value function Q∗(s, a).



where R(s, a) is the expected reward function when the agent takes action a in state s:

R(s, a) ≡ E
PT(s′|s,a)

[R(s, a, s′)] .

EPT(s′|s,a) denotes the conditional expectation of s′ over PT(s′|s, a) given s and a. Eπ(a′|s′) denotes the
conditional expectation of a′ over π(a′|s′) given s′.

2.2 Policy Iteration

Computing the value function Qπ(s, a) is called policy evaluation. Using Qπ(s, a), we can find a better
policy π′(a|s) by

π′(a|s) = δ(a − arg max
a′

Qπ(s, a′)).

This is called (greedy) policy improvement. It is known that repeating policy evaluation and policy
improvement results in the optimal policy π∗(a|s) (Sutton & Barto, 1998). This entire process is called
policy iteration:

π1
E→ Qπ1 I→ π2

E→ Qπ2 I→ π3
E→ · · · I→ π∗,

where π1 is an initial policy, E and I indicate policy evaluation and improvement steps respectively.
For technical reasons, we assume that all policies are strictly positive (i.e., all actions have non-zero
probability densities). In order to guarantee this, we use policy improvement which generates explorative
policies such as the Gibbs policy and the ε-greedy policy. In the case of the Gibbs policy,

π′(a|s) =
exp(Qπ(s, a)/τ)∫

A exp(Qπ(s, a′)/τ) da′ , (2)

where τ is a positive parameter which determines the randomness of the new policy π′. In the case of
the ε-greedy policy,

π′(a|s) =

{
1 − ε + ε/|A| if a = a∗,

ε/|A| otherwise,
(3)

where
a∗ = arg max

a
Qπ(s, a),

and ε ∈ (0, 1] determines how stochastic the new policy π′ is.

2.3 Value Function Approximation

Although policy iteration is guaranteed to produce the optimal policy, it is often computationally in-
tractable since the number of state-action pairs |S| × |A| is very large; |S| or |A| becomes infinite when
the state space or action space is continuous. To overcome this problem, the authors of the refer-
ences (Sutton & Barto, 1998; Precup et al., 2001; Lagoudakis & Parr, 2003) proposed to approximate
the state-action value function Qπ(s, a) using the following linear model:

Q̂π(s, a; θ) ≡
B∑

b=1

θbφb(s, a) = θ>φ(s, a),

where
φ(s, a) = (φ1(s, a), φ2(s, a), . . . , φB(s, a))>

are the fixed basis functions, > denotes the transpose, B is the number of basis functions, and

θ = (θ1, θ2, . . . , θB)>



are model parameters. Note that B is usually chosen to be much smaller than |S| × |A|. For N -step
transitions, we ideally want to learn the parameters θ so that the approximation error is minimized:

min
θ

E
PI,π,PT

[
1
N

N∑
n=1

(
Q̂π(sn, an; θ) − Qπ(sn, an)

)2
]

,

where EPI,π,PT denotes the expectation over {sn, an}N
n=1 following the initial-state probability density

PI(s1), the policy π(an|sn), and the transition probability density PT(sn+1|sn, an).
A fundamental problem of the above formulation is that the target function Qπ(s, a) cannot be

observed directly. To cope with this problem, we use the square of the Bellman residual (Schoknecht,
2003; Lagoudakis & Parr, 2003) as

θ∗ ≡ arg min
θ

G,

G ≡ E
PI,π,PT

[
1
N

N∑
n=1

g(sn, an; θ)

]
, (4)

g(s, a; θ) ≡
(
Q̂π(s, a; θ) − R(s, a) − γ E

PT(s′|s,a)
E

π(a′|s)

[
Q̂π(s′, a′;θ)

] )2

,

where g(s, a; θ) is the approximation error for one step (s, a) derived from the Bellman equation2 (1).

2.4 On-policy vs. Off-policy

We suppose that a dataset consisting of M episodes of N steps is available. The agent initially starts
from a randomly selected state s1 following the initial-state probability density PI(s) and chooses an
action based on a sampling policy π̃(an|sn). Then the agent makes a transition following PT(sn+1|sn, an)
and receives a reward rn (= R(sn, an, sn+1)). This is repeated for N steps—thus the training data Dπ̃ is
expressed as

Dπ̃ ≡ {dπ̃
m}M

m=1,

where each episodic sample dπ̃
m consists of a set of 4-tuple elements as

dπ̃
m ≡ {(sπ̃

m,n, aπ̃
m,n, rπ̃

m,n, sπ̃
m,n+1)}N

n=1.

We use two types of policies which have different purposes: the sampling policy π̃(a|s) for collecting
data samples and the current policy π(a|s) for computing the value function Q̂π. When π̃(a|s) is equal to
π(a|s) (the situation called on-policy), just replacing the expectation contained in the error G by sample
averages gives a consistent estimator (i.e., the estimated parameter converges to the optimal value as the
number M of episodes goes to infinity):

θ̂NIW ≡ arg min
θ

ĜNIW,

ĜNIW ≡ 1
MN

M∑
m=1

N∑
n=1

ĝm,n,

ĝm,n ≡ ĝ(sπ̃
m,n, aπ̃

m,n; θ,Dπ),

ĝ(s, a; θ,D) ≡
(
Q̂π(s, a;θ) − 1

|D(s,a)|
∑

r∈D(s,a)

r − γ

|D(s,a)|
∑

s′∈D(s,a)

E
π(a′|s′)

[Q̂π(s′, a′; θ)]
)2

,

2We note that g(s, a; θ) with a reward observation r instead of the expected reward R(s, a) corresponds to the square of

the TD error. That is,

gTD(s, a, r; θ) ≡
(
Q̂π(s, a, θ) − r − γ E

PT(s′|s,a)
E

π(a′|s)

[
Q̂π(s′, a′; θ)

] )2
.

In this paper, the Bellman residual is used to measure the approximation error but we can easily replace it with the TD

error.



where D(s,a) is a set of 4-tuple elements containing state s and action a in the training data D, and∑
r∈D(s,a)

and
∑

s′∈D(s,a)
denote the summation over r and s′ in the set D(s,a), respectively. Note that

‘NIW’ stands for ‘No Importance Weight’ (explained later).
However, π̃(a|s) is usually different from π(a|s) in reality since the current policy is updated in policy

iteration. The situation where π̃(a|s) is different from π(a|s) is called off-policy. In the off-policy setup,
θ̂NIW is no longer consistent. This inconsistency problem could be avoided by gathering new samples,
i.e., when the current policy is updated, new samples are gathered following the updated policy and the
new samples are used for policy evaluation. However, when the data sampling cost is high, this is not
cost-efficient—it would be more efficient if we could reuse the previously gathered samples.

In the following sections, we address the issue of sample reuse in the off-policy setup.

3 Importance-weighting Techniques

In this section, we review existing off-policy reinforcement learning techniques.

3.1 Importance Sampling

Importance sampling is a general technique for dealing with the off-policy situation. Suppose we have
i.i.d. (independent and identically distributed) samples {xm}M

m=1 from a strictly positive probability den-
sity function P̃ (x). Using these samples, we would like to compute the expectation of a function g(x)
over another probability density function P (x). A consistent approximation of the expectation is given
by the importance-weighted average as follows:

1
M

M∑
m=1

g(xm)
P (xm)

P̃ (xm)
M→∞−→ E

P̃ (x)

[
g(x)

P (x)

P̃ (x)

]

=
∫

g(x)
P (x)

P̃ (x)
P̃ (x)dx =

∫
g(x)P (x)dx = E

P (x)
[g(x)] .

However, applying the importance sampling technique in off-policy reinforcement learning is not that
straightforward since our training samples of state s and action a are not i.i.d. due to the sequential
nature of MDPs. Below, we review existing importance-weighting techniques in MDPs.

3.2 Episodic Importance-weights

In the reference (Sutton & Barto, 1998), the episodic importance-weight (EIW) method was proposed
which utilizes the independence between episodes:

P (d, d′) = P (d)P (d′) = P (s1, a1, . . . , sN , aN , sN+1)P (s′1, a
′
1, . . . , s

′
N , a′

N , s′N+1).

Based on the independence between episodes, the error G defined by Eq.(4) can be rewritten as

G = E
PI,π̃,PT

[
1
N

N∑
n=1

g(sn, an; θ)wN

]
,

where
wN ≡ Pπ(d)

Pπ̃(d)
.



Pπ(d) and Pπ̃(d) are the probability densities of observing episodic data d under policy π and π̃:

Pπ(d) ≡ PI(s1)
N∏

n=1

π(an|sn)PT(sn+1|sn, an),

Pπ̃(d) ≡ PI(s1)
N∏

n=1

π̃(an|sn)PT(sn+1|sn, an).

We note that the importance weights can be computed without explicitly knowing PI and PT since they
are canceled out:

wN =
∏N

n=1 π(an|sn)∏N
n=1 π̃(an|sn)

.

Using the training data Dπ̃, we can construct a consistent estimator of G as

ĜEIW ≡ 1
MN

M∑
m=1

N∑
n=1

ĝm,nŵm,N , (5)

where

ŵm,N ≡
∏N

n′=1 π(aπ̃
m,n′ |sπ̃

m,n′)∏N
n′=1 π̃(aπ̃

m,n′ |sπ̃
m,n′)

.

Based on this, the parameter θ is estimated by

θ̂EIW ≡ arg min
θ

ĜEIW.

3.3 Per-decision Importance-weights

In the reference (Precup et al., 2000), a more efficient importance sampling technique called the per-
decision importance-weight (PDIW) method was proposed. A crucial observation in PDIW is that the
error at the n-th step does not depend on the samples after the n-th step, i.e., the error G can be rewritten
as

G = E
PI,π̃,PT

[
1
N

N∑
n=1

g(sn, an; θ)wn

]
.

Using the training data Dπ̃, we can construct a consistent estimator as follows (cf. Eq.(5))

ĜPDIW ≡ 1
MN

M∑
m=1

N∑
n=1

ĝm,nŵm,n. (6)

ŵm,n in Eq.(6) only contains the relevant terms up to the n-th step, while ŵm,N in Eq.(5) includes all
the terms until the end of the episode.

Based on this, the parameter θ is estimated by

θ̂PDIW ≡ arg min
θ

ĜPDIW.

4 Adaptive Per-decision Importance-weights

The importance-weighted estimator θ̂PDIW (also θ̂EIW) is guaranteed to be consistent. However, both
are not efficient in the statistical sense (?), i.e., they do not have the smallest admissible variance3. For
this reason, θ̂PDIW can have large variance in finite sample cases and therefore learning with PDIW could
be unstable in practice. In this section, we propose a new importance-weighting method that is more
stable than the existing methods.

3More precisely, an estimator θ̂ is said to be efficient if it is unbiased and achieves the Cramér-Rao lower-bound (?).
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Figure 1: 10-state chain-walk MDP

4.1 Definition

In order to improve the estimation accuracy, it is important to control the trade-off between consistency
and efficiency (or similarly bias and variance) based on the training data. Here, we introduce a flattening
parameter ν (∈ [0, 1]) to control the trade-off by slightly ‘flattening’ the importance weights (?; ?):

ĜAPDIW ≡ 1
MN

M∑
m=1

N∑
n=1

ĝm,n(ŵm,n)ν , (7)

where APDIW means Adaptive PDIW. Based on this, the parameter θ is estimated as follows:

θ̂APDIW ≡ arg min
θ

ĜAPDIW.

When ν = 0, θ̂APDIW is reduced to the ordinary estimator θ̂NIW. Therefore, it has large bias but
has relatively small variance. On the other hand, when ν = 1, θ̂APDIW is reduced to the importance-
weighted estimator θ̂PDIW. Therefore, it has small bias but has relatively large variance. In practice, an
intermediate ν will yield the best performance.

Regarding the computation of θ̂APDIW, we have the following lemma.

Lemma 1 The solution θ̂APDIW can be computed analytically as follows:

θ̂APDIW =

(
M∑

m=1

N∑
n=1

ψ̂(sπ̃
m,n, aπ̃

m,n;Dπ̃)ψ̂(sπ̃
m,n, aπ̃

m,n;Dπ̃)>(ŵm,n)ν

)−1

×

(
M∑

m=1

N∑
n=1

(
1

|D(sπ̃
m,n,aπ̃

m,n)|
∑

r∈D(sπ̃
m,n,aπ̃

m,n)

r

)
ψ̂(sπ̃

m,n, aπ̃
m,n;Dπ̃)(ŵm,n)ν

)
, (8)

where ψ̂(s, a;D) is a B-dimensional column vector defined by

ψ̂(s, a;D) ≡ φ(s, a) − γ

|D(s,a)|
∑

s′∈D(s,a)

E
π(a′|s′)

[φ(s′, a′)] .

The proof of Lemma 1 is given in Appendix. This lemma implies that the cost for computing θ̂APDIW is
essentially the same as θ̂NIW and θ̂PDIW.

4.2 Numerical Examples

In order to illustrate how the flattening parameter ν influences the estimator θ̂APDIW, we perform policy
evaluation in the chain-walk MDP illustrated in Fig.1.
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Figure 2: True approximation error G averaged
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(cf. Fig.2).



The MDP consists of 10 states
S = {s(i)}10

i=1

and two actions
A = {a(i)}2

i=1 = {L,R}.

The reward +1 is given when visiting s(1) and s(10). The transition probability PT is indicated by the
numbers attached to the arrows in the figure; for example, PT(s(2)|s(1), R) = 0.9 and PT(s(1)|s(1), R) =
0.1, meaning that the agent can successfully move to the right node with probability 0.9 (indicated by
solid arrows in the figure) and the action fails with probability 0.1 (indicated by dashed arrows in the
figure). We use 6 Gaussian kernels with standard deviation σ = 10 as basis functions and locate kernel
centers at s(1), s(5) and s(10). More specifically, the basis functions φ(s, a) = (φ1(s, a), . . . , φ6(s, a)) are
defined by

φ3(i−1)+j(s, a) = I(a = a(i))exp
(
− (s − cj)2

2σ2

)
, (9)

for i = 1, 2 and j = 1, 2, 3, where
c1 = 1, c2 = 5, c3 = 10,

and

I(x) =

{
1 if x is true,
0 if x is not true,

We ran the experiments 50 times; the sampling policy π̃(a|s) and the current policy π(a|s) were chosen
randomly at every trial such that π̃ 6= π. The discount factor was set at γ = 0.9. The model parameter
θ̂APDIW was learned from the training samples Dπ̃ and its approximation error was computed from the
test samples Dπ.

Fig.2 depicts the true approximation error G averaged over 50 trials as a function of the flattening
parameter ν for M = 10, 30, 50. Fig.2(a) shows that when the number of episodes is large (M = 50),
the approximation error tends to decrease as the flattening parameter increases. This would be a natural
result due to the consistency of θ̂APDIW when ν = 1. On the other hand, Fig.2(b) shows that when
the number of episodes is not large (M = 30), ν = 1 performs rather poorly. This implies that the
consistent estimator tends to be unstable when the number of episodes is not large enough—ν = 0.7
works the best in this case. Fig.2(c) shows the results when the number of episodes is further reduced
(M = 10). This illustrates that the consistent estimator with ν = 1 is even worse than the ordinary
estimator (ν = 0) because the bias is dominated by large variance. In this case, the best ν is even smaller
and is achieved at ν = 0.4. The above results show that APDIW can outperform PDIW particularly
when only a small number of training samples are available, provided that the flattening parameter ν is
chosen appropriately.

5 Automatic Selection of the Flattening Parameter

Generally, the best ν tends to be large (small) when the number of training samples is large (small).
However, this general trend is not sufficient to fine-tune the flattening parameter since the best value of
ν depends on training samples, policies, the model of value functions etc. In this section, we discuss how
we perform model selection in order to choose the best flattening parameter ν automatically from the
training data and policies.



5.1 Importance-weighted Cross-validation

As shown in Section 4, the performance of APDIW depends on the choice of the flattening parameter ν.
Ideally, we set ν so that the approximation error G is minimized, but true G is inaccessible in practice.
To cope with this problem, we estimate the approximation error G using importance-weighted cross-
validation (IWCV) (?). The basic idea of IWCV is to divide the training data Dπ̃ into a ‘training part’
and a ‘validation part’. Then the parameter θ is learned from the training part and its approximation
error is estimated using the validation part. Below we explain in more detail how we apply IWCV to the
selection of the flattening parameter ν in the current context.

Let us divide a training dataset Dπ̃ containing M episodes into K subsets {Dπ̃
k}K

k=1 of approximately

the same size (typically K = 5). For simplicity, we assume that M is divisible by K. Let θ̂
k

APDIW be the
parameter learned from {Dπ̃

k′}k′ 6=k with APDIW (cf. Eq.(7)). Then, the approximation error is estimated
by

ĜIWCV =
1
K

K∑
k=1

Ĝk
IWCV,

where

Ĝk
IWCV =

K

MN

∑
dπ̃

m∈Dπ̃
k

N∑
n=1

ĝ(sπ̃
m,n, aπ̃

m,n, rπ̃
m,n; θ̂

k

APDIW,Dπ̃
k )ŵm,n.

We estimate the approximation error by the above K-fold IWCV method for all candidate models
(in the current setting, a candidate model corresponds to a different value of the flattening parameter ν)
and choose the one that minimizes the estimated error:

ν̂IWCV = arg min
ν

ĜIWCV.

One may think that, for model selection, ĜAPDIW could be directly used, instead of ĜIWCV. However,
it can be proven that ĜAPDIW is heavily biased (or in other words, over-fitted) since the same training
samples are used twice for learning parameters and estimating the approximation error (?). On the other
hand, we can prove that ĜIWCV is an almost unbiased estimator of G, where ‘almost’ comes from the fact
that the number of training samples is reduced due to data splitting in the cross-validation procedure (?).
Note that ordinary CV (without importance weight) is heavily biased due to the off-policy setup.

In general, the use of IWCV is computationally rather expensive since θ̂
k

APDIW and Ĝk
IWCV need to be

computed many times. For example, when performing 5-fold IWCV for 11 candidates of the flattening
parameter ν ∈ {0.0, 0.1, . . . , 0.9, 1.0}, we need to compute θ̂

k

APDIW and Ĝk
IWCV 55 times. However, we

argue that this is acceptable in practice due to the following two reasons. First, sensible model selection
via IWCV allows us to obtain a much better solution with a small number of samples. Thus, in total,
the computation time may not grow that much. The second reason is that cross-validation is suitable
for paralell computing since error estimation for different flattening parameters and different folds are
independent of each other. For instance, when performing 5-fold IWCV for 11 candidates of the flattening
parameter, we can compute ĜIWCV for all candidates at once in parallel using 55 CPUs; this is highly
realistic in the current computing environment.

5.2 Numerical Examples

In order to illustrate how IWCV works, we use the same numerical examples as Section 4.2. Fig.3 depicts
the approximation error estimated by 5-fold IWCV averaged over 50 trials as a function of the flattening
parameter ν. The graphs show that IWCV nicely captures the trend of the true approximation error for
all three cases (cf. Fig.2).
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Figure 4: Average true approximation error G over 50 trials obtained by NIW (ν = 0), PDIW (ν = 1),
APDIW+IWCV (ν is chosen by IWCV) in the 10-state chain-walk MDP.

Fig.4 describes, as a function of the number M of episodes, the average true approximation er-
ror obtained by NIW (APDIW with ν = 0), PDIW (APDIW with ν = 1), APDIW+IWCV (ν ∈
{0.0, 0.1, . . . , 0.9, 1.0} is selected in each trial using 5-fold IWCV). This result shows that the improve-
ment of the performance by NIW saturates when M ≥ 30, implying that the bias caused by NIW is not
negligible. The performance of PDIW is worse than NIW when M ≤ 20, which is caused by the large
variance of PDIW. On the other hand, APDIW+IWCV consistently gives good performance for all M ,
illustrating the strong adaptation ability of the proposed method.

6 Sample-reuse Policy Iteration (SRPI)

So far, we have only used our proposed APDIW+IWCV method in the context of policy evaluation. In
this section, we extend the method to the full policy-iteration setup.

6.1 Algorithm

Let us denote the policy at the l-th iteration by πl and the maximum number of iterations by L. In
general policy-iteration methods, new data samples Dπl are collected following the new policy πl during
the policy evaluation step. Thus, previously-collected data samples {Dπ1 ,Dπ2 , ...,Dπl−1} are not used:

π1
E:{Dπ1}→ Q̂π1 I→ π2

E:{Dπ2}−→ Q̂π2 I→ π3
E:{Dπ3}−→ · · · I−→ πL,

where E : {D} indicates policy evaluation using the data sample D. It would be more cost-efficient if we
could reuse all previously-collected data samples to perform policy evaluation with a growing dataset as:

π1
E:{Dπ1}−→ Q̂π1 I→ π2

E:{Dπ1 ,Dπ2}−→ Q̂π2 I→ π3
E:{Dπ1 ,Dπ2 ,Dπ3}−→ · · · I−→ πL.

Reusing previously collected data samples turns this into an off-policy scenario as the previous policies
and the current policy are different unless the current policy has converged to the optimal one. Here, we
propose using APDIW+IWCV in policy iteration. For this purpose, we extend the definition of ĜAPDIW
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Algorithm 1: SampleReusePolicyIteration(φ, π1)

//φ Basis functions, φ(s, a) = (φ1(s, a), φ2(s, a), . . . , φB(s, a))>

//π1 Initial policy function, π1(a|s) ∈ [0, 1]

l ← 1

for l ← 1, 2, . . . , L

do



// Collect data samples using current policy πl

Dπl ← DataSampling(πl)

// Choose flattening parameter ν̂ that minimizes ĜIWCV

for ν ← 0, 0.1, . . . , 1

do
{

ĜIWCV[ν] ← ApproximationErrorEstimation({Dπl′}l
l′=1, {πl′}l

l′=1, ν, φ)

ν̂ ← arg min
ν

ĜIWCV[ν]

// Learn parameter θ for policy evaluation Q̂πl

θ̂ ← PolicyEvaluation({Dπl′}l
l′=1, {πl′}l

l′=1, ν̂, φ)

// Update policy function using Q̂πl

πl+1 ← PolicyImprovement(θ̂, φ)
return (πL)

Figure 5: Pseudo code of SRPI. L is the maximum number of policy iteration. By the DataSampling
function, data samples (M episodes and N steps) are collected following the current policy πl. By
the PolicyImprovement function, the current policy is updated based on the value function Q̂πl with
a policy-improvement method such as the Gibbs policy (2) and the ε-greedy policy (3). The pseudo
codes of the ApproximationErrorEstimation and PolicyEvaluation functions are described in Figs.6 and
7, respectively.

so that multiple sampling policies {π1, π2, . . . , πl} are taken into account:

θ̂
l

APDIW ≡ arg min
θ

Ĝl
APDIW,

Ĝl
APDIW ≡ 1

lMN

l∑
l′=1

M∑
m=1

N∑
n=1

ĝ(sπl′
m,n, aπl′

m,n; θ, {Dπl′}l
l′=1)

( ∏n
n′=1 πl(a

πl′
m,n′ |sπl′

m,n′)∏n
n′=1 πl′(a

πl′
m,n′ |sπl′

m,n′)

)νl

, (10)

where Ĝl
APDIW is the approximation error estimated at the l-th policy evaluation using APDIW. The

flattening parameter νl is chosen based on IWCV before performing policy evaluation. We call this
sample-reuse policy iteration (SRPI). The SRPI algorithm is given in pseudo code in Figs.5-7.

6.2 Numerical Examples

We will use the system from the numerical examples in Section 5.2 also in the policy iteration context
in order to illustrate how SRPI works. We consider three scenarios: ν is fixed at 0, ν is fixed at 1, and
SRPI where ν is chosen by IWCV. The agent collects samples Dπl at every policy iteration following the
current policy πl, and computes θ̂

l

APDIW from all collected samples {Dπ1 ,Dπ2 , . . . ,Dπl} using Eq.(10).
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Algorithm 2: ApproximationErrorEstimation({Dπl′}l
l′=1, {πl′}l

l′=1, ν,φ)

{Dk′}K
k′=1 ← {Dπl′}l

l′=1 // Divide M episodic samples into K groups
M ′ ← M

K // Number of episodes in each group. Assume M/K is integer.

for k ← 1, 2, . . . ,K

do



// Learn parameter θ from K − 1 groups of data samples {Dk′}k′ 6=k

θ̂
k

APDIW ← PolicyEvaluation({Dk′}k′ 6=k, {πl′}l
l′=1, ν, φ)

// Estimate approximation error of θ̂
k

APDIW from k-th group of data samples {Dk′}k′=k

Ĝk
IWCV ← 1

lM ′N

l∑
l′=1

M ′∑
m=1

N∑
n=1

ĝ(sπl′
m,n, aπl′

m,n; θ̂
k

APDIW,Dk)

( ∏n
n′=1 πl(a

πl′
m,n′ |sπl′

m,n′)∏n
n′=1 πl′(a

πl′
m,n′ |sπl′

m,n′)

)
// Compute the mean of approximation errors
ĜIWCV ← 1

K

∑K
k=1 Ĝk

IWCV

return (ĜIWCV)

Figure 6: Pseudo code of ApproximationErrorEstimation. ν is the flattening parameter, φ is a vector of
basis functions, K is the number of folds, M is the number of episodes, and N is the number of steps.
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Algorithm 3: PolicyEvaluation({Dπl′}l
l′=1, {πl′}l

l′=1, ν, φ)

Â ← 0 // (B × B) matrix, corresponding to the left term of Eq.(8)
b̂ ← 0 //B-dimensional vector, corresponding to the right term of Eq.(8)

for l′ ← 1, 2, . . . , l

do



w ← 1 //Importance weight
for each (s, a) ∈ Dπl′

do



// Estimate the expectation of φ(s′, a′) under πl and PT

ψ̂(s, a) ← φ(s, a) − γ

|D(s,a)|
∑

s′∈D(s,a)

E
πl(a′|s′)

[φ(s′, a′)]

// Compute the expected reward
R̂(s, a) ← 1

|D(s,a)|
∑

r∈D(s,a)
r

// Update importance weight
w ← w · πl(a|s)

πl′ (a|s)

// Increment A and b

Â ← Â + ψ̂(s, a)ψ̂(s, a)>wν

b̂ ← b̂ + R̂(s, a)ψ̂(s, a)>wν

// Compute θ̂APDIW

θ̂APDIW ← Â
−1

b̂

return (θ̂APDIW)

Figure 7: Pseudo code of PolicyEvaluation. ν is the flattening parameter and φ is a vector of basis
functions.
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(a) M = 5
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(b) M = 10

Figure 8: The performance of policies learned in three scenarios: ν = 0, ν = 1, and SRPI (ν is chosen
by IWCV) in the 10-state chain-walk problem. The performance is measured by the average sum of
discounted rewards computed from test samples over 30 trials. The agent collects training sample Dπl

(M = 5 or 10 with N = 10) at every iteration and performs policy evaluation using all collected samples
{Dπ1 ,Dπ2 , . . . ,Dπl}. The total number of episodes means the number of training episodes (M × l)
collected by the agent in policy iteration.
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(a) M = 5
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(b) M = 10

Figure 9: Average flattening parameter used by SRPI over 30 trials as a function of total number of
episodes in the 10-state chain-walk problem.

We use Gaussian kernels defined by Eq.(9) except that kernel centers {c1, c2, c3} are randomly selected
from the state space S every trial. The initial policy π1 is chosen randomly and policy improvement is
carried out by the Gibbs policy (2) with τ = 2l.

Fig.8 depicts the average sum of discounted rewards over 30 trials when M = 5, 10 with a fixed number
of steps (N = 10). The graphs show that SRPI provides stable and fast learning of policies while the
performance improvement of policies learned with ν = 0 saturates in early iterations. The method with
ν = 1 can improve policies well but its progress tends to be behind SRPI.

Fig.9 depicts the average value of the flattening parameter used in SRPI as a function of the total
number of episodes. The graphs show that the value of the flattening parameter chosen by IWCV tends
to rise in the beginning and go down later. At first sight, this does not agree with the general trend
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(a) Ilustration

Parameter Value

Mass of the cart, W 8[kg]
Mass of the rod, w 2[kg]
Length of the rod, d 0.5[m]

Simulation time step, ∆t 0.1[s]

(b) Parameter setting

Figure 10: Illustration of the inverted pendulum task and parameters used in the simulation.
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(b) Average flattening parameter

Figure 11: The results of sample-reuse policy iteration in the task of swing-up inverted-pendulum. The
agent collects training sample Dπl (M = 10 and N = 100) at every iteration and policy evaluation
is performed using all collected samples {Dπ1 ,Dπ2 , . . . ,Dπl}. (a) The performance of policies learned
with ν = 0, ν = 1, and SRPI. The performance is measured by the average sum of discounted rewards
computed from test samples over 20 trials. The total number of episodes means the number of training
episodes (M × l) collected by the agent in policy iteration. (b) Average flattening parameter used by
SRPI over 20 trials.

of preferring a low-variance estimator in early stages and preferring a low-bias estimator later—but his
result is still consistent with the general trend. When the sum of discounted rewards increase rapidly
(the total numbers of episodes is up to 15 when M = 5 and 30 when M = 10 in Fig.9), the value of the
flattening parameter increases (see Fig.8). After that, the sum of discounted rewards does not increase
anymore (see Fig.8) since the policy iteration has already been converged. Then it is natural to prefer a
small flattening parameter (Fig.9) since the sample selection bias becomes mild after convergence.

These results show that SRPI can effectively reuse previously-collected samples by appropriately
tuning the flattening parameter according to the condition of data samples, policies etc.



7 Experiments

In this section, we evaluate the performance of our proposed method SRPI in more complex tasks, i.e.,
swing-up of an inverted pendulum and a mountain-car problem.

7.1 Swing-up Inverted Pendulum

We consider the task of swing-up inverted pendulum (?) illustrated in Fig.10(a), consisting of a rod
hinged at the top of a cart. The goal of the task is to swing the rod up by moving the cart. We have
three actions: applying positive force +50 [kg · m/s2] to the cart to move right, negative force −50 to
move left, and zero force to just coast. That is, the action space A is discrete and described by

A = {50,−50, 0} [kg · m/s2].

We note that the force itself is not strong enough to swing the rod up; so the cart needs to be moved
back and forth several times to swing the rod up. The state space S is continuous and consists of the
angle ϕ [rad] (∈ [0, 2π]) and the angular velocity ϕ̇ [rad/s] (∈ [−π, π])—thus, a state s is described by
two-dimensional vector s = (ϕ, ϕ̇)>. Fig.10(b) shows the parameter setting used in the simulation. The
angle ϕ and angular velocity ϕ̇ are updated (?) as follows:

ϕt+1 =ϕt+ϕ̇t+1∆t,

ϕ̇t+1 =ϕ̇t+
9.8 sin(ϕt)−αwd(ϕ̇t)2 sin(2ϕt)/2+α cos(ϕt)at

4l/3 − αwd cos2(ϕt)
∆t,

where α = 1/(W + w) and at is the action (∈ A) chosen at time t. We define the reward function
R(s, a, s′) as

R(s, a, s′) = cos(ϕs′),

where ϕs′ denotes the angle ϕ of state s′.
We use 48 Gaussian kernels with standard deviation σ = π as basis functions, and arrange kernel

centers over the following grid points:

{0, 2/3π, 4/3π, 2π} × {−3π,−π, π, 3π}.

That is, the basis functions φ(s, a) = {φ1(s, a), . . . , φ16(s, a)} are set as

φ16(i−1)+j(s, a) = I(a = a(i))exp
(
−‖s − cj‖2

2σ2

)
,

for i = 1, 2, 3 and j = 1, 2, . . . , 16, where

c1 = (0,−3π)>, c2 = (0,−π)>, . . . , c12 = (2π, 3π)>.

The initial policy π1(a|s) is chosen randomly, and the initial-state probability density PI(s) is set to be
uniform. The agent collects data samples Dπl (M = 10 and N = 100) at each policy iteration following
the current policy πl. The discounted factor is set at γ = 0.95 and the policy is improved by the Gibbs
policy (2) with τ = l.

Fig.11(a) describes the performance of learned policies. The graph shows that SRPI nicely improves
the performance throughout entire policy iteration. On the other hand, the performance when the
flattening parameter is fixed at ν = 0 or ν = 1 is not properly improved after the middle of iterations.
The average flattening parameter depicted in Fig.11(b) shows that the parameter tends to increase quickly
in the beginning and then is kept at medium values. These results indicate that the flattening parameter
is well-adjusted to reuse the previously-collected samples effectively for policy evaluation, and thus SRPI
can outperform the other methods.



7.2 Mountain Car

We evaluate our proposed method in another task—the mountain car task (Sutton & Barto, 1998)
illustrated in Fig.12. The task consists of a car and two hills whose landscape is described by sin(3x);
the top of the right hill is the goal to which we want to guide the car. We have three actions

{+0.2,−0.2, 0},

which are the values of the force applied to the car. We note that the force of the car is not strong enough
to climb up the slope to reach the goal. The state space S is described by the horizontal position x [m]
(∈ [−1.2, 0.5]) and the velocity ẋ [m/s] (∈ [−1.5, 1.5]):

s = (x, ẋ)>.

Fig.12 shows the parameter setting used in the simulation. The position x and velocity ẋ are updated by

xt+1 =xt + ẋt+1∆t,

ẋt+1 =ẋt +
(
− 9.8w cos(3xt) +

at

w
− kẋt

)
∆t,

where at is the action (∈ A) chosen at the time t. We define the reward function R(s, a, s′) as

R(s, a, s′) =

{
1 if xs′ ≥ 0.5,

−0.01 otherwise,

where xs′ denotes the horizontal position x of state s′.
We use the same experimental setup as that of the swing-up inverted pendulum task except that the

number of Gaussian kernels is 36, the standard deviation is σ = 1, and the kernel centers are allocated
over the follwoing grid points:

{−1.2, 0.35, 0.5} × {−1.5,−0.5, 0.5, 1.5}.

Fig.13(a) describes the performance of learned policies measured by the average sum of discounted
rewards computed from the test samples. The graph shows similar tendencies to the swing-up inverted
pendulum task for SRPI and ν = 1, while the method with ν = 0 performs relatively well this time. This
would imply that the bias in previously-collected data samples does not affect so much on estimation of
value functions—it may happen if the basis function represents the value function quite well (in other
words, the model is almost correctly speficied) or the policy is not significantly changed over iterations.
The average flattening parameter (cf. Fig.13(b)) shows that the parameter value decreases soon after the
increase in the beginning, and then the smaller values tend to be chosen. This indicates that SRPI tends
to use low-variance estimators in this task. These results show that SRPI can perform stable and faster
learning by effectively reusing previously-collected data.

8 Conclusions and Outlook

Instability has been one of the critical limitations of importance-sampling techniques, which often makes
off-policy methods impractical. To overcome this weakness, we introduced an adaptive importance-
sampling technique for controlling the trade-off between consistency and stability in value function ap-
proximation. We further provided an automatic model selection method for actively choosing the trade-off
parameter. We also proposed using the adaptive importance-sampling technique in policy iteration for
efficiently reusing previously-collected data samples. The experimental results showed that the proposed
method compares favorably with existing approaches.
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(a) Ilustration

Parameter Value

Mass of the car, w 0.2[kg]
Friction coefficient, k 0.3

Simulation time step, ∆t 0.1[s]

(b) Parameter setting

Figure 12: Illustration of the mountain car task and parameters used in the simulation.
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(b) Average flattening parameter

Figure 13: The results of sample-reuse policy iteration in the mountain-car task. The agent collects
training sample Dπl (M = 10 and N = 100) at every iteration and policy evaluation is performed using
all collected samples {Dπ1 ,Dπ2 , . . . ,Dπl}. (a) The performance of policies learned with ν = 0, ν = 1,
and SRPI. The performance is measured by the average sum of discounted rewards computed from test
samples over 20 trials. The total number of episodes means the number of training episodes (M × l)
collected by the agent in policy iteration. (b) Average flattening parameter used by SRPI over 20 trials.

We have assumed that the length of episodes is the same for all samples. However, in practice, the
length may vary depending on trials; then the domain of the importance weight also varies. Thus it is
important to extend the current approach so that such variable-length epsodic data could be handled.

The method presented in this paper may be extended to policy gradient methods where the need for
the sample reuse is even more urgent as small gradient-descent steps result into an under utilization of the
data. While importance-sampling has been applied in the settings of policy gradient methods (Shelton,
2001; Peshkin, 2002), policy gradient methods tend to be unstable when used with standard importance
sampling methods (Kakade, 2002)—the proposed methods would offer an interesting alternative.



Appendix: Proof of Lemma 1

Taking the partial derivative of ĜAPDIW with respect to θ and equating it to zero, we have

∂

∂θ
ĜAPDIW =

1
MN

M∑
m=1

N∑
n=1

∂

∂θ
ĝm,n(ŵm,n)ν

=
1

MN

M∑
m=1

N∑
n=1

∂

∂θ

(
θ>φ(sπ̃

m,n, aπ̃
m,n) − 1

|D(sπ̃
m,n,aπ̃

m,n)|
∑

r∈D(sπ̃
m,n,aπ̃

m,n)

r

− γ

|D(sπ̃
m,n,aπ̃

m,n)|
∑

s′∈D(sπ̃
m,n,aπ̃

m,n)

Eπ̃(a′|s′)

[
θ>φ(s′, a′)

])2

(ŵm,n)ν

=
1

MN

M∑
m=1

N∑
n=1

∂

∂θ

(
θ>ψ̂(sπ̃

m,n, aπ̃
m,n;Dπ) − 1

|D(sπ̃
m,n,aπ̃

m,n)|
∑

r∈D(sπ̃
m,n,aπ̃

m,n)

r

)2

(ŵm,n)ν

=
2

MN

M∑
m=1

N∑
n=1

(
θ>ψ̂(sπ̃

m,n, aπ̃
m,n;Dπ) − 1

|D(sπ̃
m,n,aπ̃

m,n)|
∑

r∈D(sπ̃
m,n,aπ̃

m,n)

r
)

× ψ̂(sπ̃
m,n, aπ̃

m,n;Dπ)>(ŵm,n)ν

= 0.

Then, the parameter θ̂APDIW is obtained by

θ̂APDIW =
( M∑

m=1

N∑
n=1

ψ̂(sπ̃
m,n, aπ̃

m,n;Dπ̃)ψ̂(sπ̃
m,n, aπ̃

m,n;Dπ̃)>(ŵm,n)ν

)−1

×
( M∑

m=1

N∑
n=1

( 1
|D(sπ̃

m,n,aπ̃
m,n)|

∑
r∈D(sπ̃

m,n,aπ̃
m,n)

r
)
ψ̂(sπ̃

m,n, aπ̃
m,n;Dπ̃)>(ŵm,n)ν

)
.

(Q.E.D.)
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